Search results
Results from the WOW.Com Content Network
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers ( Irrationalität und Transzendenz bestimmter Zahlen ).
Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. This list may not reflect recent changes. ...
An instance of the ErdÅ‘s–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored. The 1-factorization conjecture that if n {\displaystyle n} is odd or even and k ≥ n , n − 1 {\displaystyle k\geq n,n-1} respectively, then a k {\displaystyle k ...
Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic. Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of ...
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .
In mathematics, particularly in dynamical systems, the Hilbert–Arnold problem is an unsolved problem concerning the estimation of limit cycles.It asks whether in a generic [disambiguation needed] finite-parameter family of smooth vector fields on a sphere with a compact parameter base, the number of limit cycles is uniformly bounded across all parameter values.
In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...