Search results
Results from the WOW.Com Content Network
The Alveolar–arterial gradient (A-aO 2, [1] or A–a gradient), is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia. [2] The A–a gradient helps to assess the integrity of the alveolar ...
The partial pressure of carbon dioxide, along with the pH, can be used to differentiate between metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. Hypoventilation exists when the ratio of carbon dioxide production to alveolar ventilation increases above normal values – greater than 45mmHg.
The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms.
Under most conditions, the partial pressure of carbon dioxide (PCO 2), or concentration of carbon dioxide, controls the respiratory rate. The peripheral chemoreceptors that detect changes in the levels of oxygen and carbon dioxide are located in the arterial aortic bodies and the carotid bodies. [2]
Key to understanding whether the lung is involved in a particular case of hypoxemia is the difference between the alveolar and the arterial oxygen levels; this A-a difference is often called the A-a gradient and is normally small. The arterial oxygen partial pressure is obtained directly from an arterial blood gas determination. The oxygen ...
Monitoring the level of carbon dioxide in neonatal infants to ensure that the level is not too high (hypercarbia) or too low is important for improving outcomes for neonates in intensive care. [4] Carbon dioxide can be monitored by taking a blood sample ( arterial blood gas ), through the breath ( exhalation ), and it can be measured ...
Arterial carbon dioxide tension, or partial pressure: P A CO 2: Alveolar carbon dioxide tension, or partial pressure: P v O 2: Oxygen tension of mixed venous blood: P (A-a) O 2: Alveolar-arterial oxygen tension difference. The term formerly used (A-a D O 2) is discouraged. P (a/A) O 2: Alveolar-arterial tension ratio; P a O 2:P A O 2 The term ...
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as ...