Search results
Results from the WOW.Com Content Network
Scrypt is used in many cryptocurrencies as a proof-of-work algorithm (more precisely, as the hash function in the Hashcash proof-of-work algorithm). It was first implemented for Tenebrix (released in September 2011) and served as the basis for Litecoin and Dogecoin , which also adopted its scrypt algorithm.
Scrypt: C++ [10] PoW: One of the first cryptocurrencies to use scrypt as a hashing algorithm. 2011 Namecoin: NMC Vincent Durham [11] [12] SHA-256d: C++ [13] PoW: Also acts as an alternative, decentralized DNS. 2012 Peercoin: PPC Sunny King (pseudonym) [citation needed] SHA-256d [citation needed] C++ [14] PoW & PoS: The first cryptocurrency to ...
Blum-Blum-Shub is a PRNG algorithm that is considered cryptographically secure. Its base is based on prime numbers. Park-Miller generator: 1988 S. K. Park and K. W. Miller [13] A specific implementation of a Lehmer generator, widely used because it is included in C++ as the function minstd_rand0 from C++11 onwards. [14] ACORN generator: 1989 ...
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...
Algorithm BLAKE2b Input: M Message to be hashed cbMessageLen: Number, (0..2 128) Length of the message in bytes Key Optional 0..64 byte key cbKeyLen: Number, (0..64) Length of optional key in bytes cbHashLen: Number, (1..64) Desired hash length in bytes Output: Hash Hash of cbHashLen bytes Initialize State vector h with IV h 0..7 ← IV 0..7 ...
Fortuna is a cryptographically secure pseudorandom number generator (CS-PRNG) devised by Bruce Schneier and Niels Ferguson and published in 2003. It is named after Fortuna, the Roman goddess of chance. FreeBSD uses Fortuna for /dev/random and /dev/urandom is symbolically linked to it since FreeBSD 11. [1]
Scrypt; Secret sharing using the Chinese remainder theorem; SecureLog; Six-state protocol; Software taggant; Substitution–permutation network; Summation generator; Supersingular isogeny key exchange; Symmetric-key algorithm