Search results
Results from the WOW.Com Content Network
PascalABC.NET was developed by a group of enthusiasts at the Institute of Mathematics, Mechanics, and Computer Science in Rostov-on-Don, Russia. [1] In 2003, a predecessor of the modern PascalABC.NET, called Pascal ABC, was implemented by associate professor Stanislav Mikhalkovich to be used for teaching schoolchildren instead of Turbo Pascal, which became outdated and incompatible with modern ...
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).
The Pascal distribution (after Blaise Pascal) and Polya distribution (for George Pólya) are special cases of the negative binomial distribution. A convention among engineers, climatologists, and others is to use "negative binomial" or "Pascal" for the case of an integer-valued stopping-time parameter ( r {\displaystyle r} ) and use "Polya" for ...
Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries (,) give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more. [6]
Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = ( 1 / 2 , 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.
The number of claims N is a random variable, which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc..For the "Panjer recursion", the probability distribution of N has to be a member of the Panjer class, otherwise known as the (a,b,0) class of distributions.