Search results
Results from the WOW.Com Content Network
The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction used in organic chemistry of stabilized phosphonate carbanions with aldehydes (or ketones) to produce predominantly E-alkenes. [1] The Horner–Wadsworth–Emmons reaction. In 1958, Leopold Horner published a modified Wittig reaction using phosphonate-stabilized carbanions.
Ordinarily, the Horner–Wadsworth–Emmons reaction provides the (E)-enoate (α,β-unsaturated ester), just as the Wittig reaction does. To obtain the (Z)-enolate, the Still-Gennari modification of the Horner-Wadsworth-Emmons reaction can be used.
Triethyl phosphonoacetate is a reagent for organic synthesis used in the Horner-Wadsworth-Emmons reaction (HWE) or the Horner-Emmons modification. Triethyl phosphonoacetate can be added dropwise to sodium methoxide solution to prepare a phosphonate anion. It has an acidic proton that can easily be abstracted by a weak base.
William D. Emmons (November 18, 1924 – December 8, 2001) was an American chemist and published with William S. Wadsworth a modification to the Wittig-Horner reaction using phosphonate-stabilized carbanions, now called the Horner-Wadsworth-Emmons reaction in his honor.
It is however less reactive than ylides lacking EWGs. For example they usually fail to react with ketones, necessitating the use of the Horner–Wadsworth–Emmons reaction as an alternative. Such stabilized ylides usually give rise to an E-alkene product when they react, rather than the more usual Z-alkene. A "stabilized" Wittig reagent.
Leopold Horner (24 August 1911 – 5 October 2005) was a German chemist who published a modified Wittig reaction using phosphonate-stabilized carbanions now called the Horner–Wadsworth–Emmons reaction (HWE reaction) or Horner-Wittig reaction.
A wide variety of carbonyl olefination methods that are direct alternative to the Julia olefination are known: the Wittig reaction, [25] the Horner-Wadsworth-Emmons reaction, [26] Peterson olefination, [27] and others. The primary advantage of Julia olefination is that the sulfone precursors are sometimes more readily available and easier to ...
1,2-Oxaphosphetanes are rarely isolated but are important intermediates in the Wittig reaction and related reactions such as the Seyferth–Gilbert homologation and the Horner–Wadsworth–Emmons reaction. [2] Edwin Vedejs's NMR studies first revealed the importance of oxaphosphetanes in the mechanism of the Wittig reaction in the 1970s. [3] [4]