enow.com Web Search

  1. Ad

    related to: linear transformation matrix proof worksheet 1

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ. Conversely, suppose a matrix A is diagonalizable. Let P be a non-singular square matrix such that P −1 AP is some diagonal matrix D.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...

  6. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    A transformation A ↦ P −1 AP is called a similarity transformation or conjugation of the matrix A. In the general linear group , similarity is therefore the same as conjugacy , and similar matrices are also called conjugate ; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than ...

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  8. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The last property given above shows that if one views as a linear transformation from Hilbert space to , then the matrix corresponds to the adjoint operator of . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.

  9. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    The change-of-basis formula is a specific case of this general principle, although this is not immediately clear from its definition and proof. When one says that a matrix represents a linear map, one refers implicitly to bases of implied vector spaces, and to the fact that the choice of a basis induces an isomorphism between a vector space and ...

  1. Ad

    related to: linear transformation matrix proof worksheet 1