Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1-sphere S 1 is a circle. [2] Disk with collapsed rim: written in topology as D 2 /S 1; This construction moves from geometry to pure topology.
More generally, stereographic projection may be applied to the unit n-sphere S n in (n + 1)-dimensional Euclidean space E n+1. If Q is a point of S n and E a hyperplane in E n+1, then the stereographic projection of a point P ∈ S n − {Q} is the point P ′ of intersection of the line QP with E.
Simple examples of Einstein manifolds include: All 2D manifolds admit Einstein metrics. In fact, in this dimension, a metric is Einstein if and only if it has constant Gauss curvature. The classical uniformization theorem for Riemann surfaces guarantees that there is such a metric in every conformal class on any 2-manifold.
For example, the class of two-dimensional Euclidean space forms includes Riemannian metrics on the Klein bottle, the Möbius strip, the torus, the cylinder S 1 × ℝ, along with the Euclidean plane. Unlike the case of two-dimensional spherical space forms, in some cases two space form structures on the same manifold are not homothetic.
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry: a homogeneous space G/H where G = SO(n + 1, 1) acting on the (n + 2)-dimensional Lorentzian space R n+1,1 and H is the isotropy group of a fixed null ray in the light cone.