enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Most of the algebraic properties of the Christoffel symbols follow from their relationship to the affine connection; only a few follow from the fact that the structure group is the orthogonal group O(m, n) (or the Lorentz group O(3, 1) for general relativity). Christoffel symbols are used for performing practical calculations.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The key is that when one regards X 1 ⁠ ∂f / ∂u ⁠ + X 2 ⁠ ∂f / ∂v ⁠ as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...

  5. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  6. Kretschmann scalar - Wikipedia

    en.wikipedia.org/wiki/Kretschmann_scalar

    where = + is the Riemann curvature tensor and is the Christoffel symbol. Because it is a sum of squares of tensor components, this is a quadratic invariant. Einstein summation convention with raised and lowered indices is used above and throughout the article.

  7. Spin connection - Wikipedia

    en.wikipedia.org/wiki/Spin_connection

    The torsion-free spin connection is given by = + = , where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection , which is the unique metric compatible, torsion-free connection on a Riemannian Manifold.

  8. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...

  9. Christoffel symbol - Wikipedia

    en.wikipedia.org/?title=Christoffel_symbol&...

    From Wikipedia, the free encyclopedia. Redirect page