Search results
Results from the WOW.Com Content Network
Glass and metals are examples of isotropic materials. [3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate. Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict.
Fourth-rank tensor properties, like the elastic constants, are anisotropic, even for materials with cubic symmetry. The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material, stiffness (or compliance) tensors are used instead.
In diffusion theory, radiance is taken to be largely isotropic, so only the isotropic and first-order anisotropic terms are used: (, ^,) = =, (,), (^) where n, m are the expansion coefficients. Radiance is expressed with 4 terms: one for n = 0 (the isotropic term) and 3 terms for n = 1 (the anisotropic terms).
The Tensorial Anisotropy Index A T [5] extends the Zener ratio for fully anisotropic materials and overcomes the limitation of the AU that is designed for materials exhibiting internal symmetries of elastic crystals, which is not always observed in multi-component composites. It takes into consideration all the 21 coefficients of the fully ...
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
Additionally, all crystal structures, including the cubic crystal system, are anisotropic with respect to certain properties, and isotropic to others (such as density). [ 4 ] The anisotropy of a crystal’s properties depends on the rank of the tensor used to describe the property, as well as the symmetries present within the crystal.
If terms of order / are neglected, the Tolman–Oppenheimer–Volkoff equation becomes the Newtonian hydrostatic equation, used to find the equilibrium structure of a spherically symmetric body of isotropic material when general-relativistic corrections are not important.