Search results
Results from the WOW.Com Content Network
In chemistry, heat amounts were often measured in calories. Confusingly, there are two common units with that name, respectively denoted cal and Cal: the small calorie (gram-calorie, cal) is 4.184 J exactly. It was originally defined so that the specific heat capacity of liquid water would be 1 cal/(°C⋅g).
Specific energy: Energy density per unit mass J⋅kg −1: L 2 T −2: intensive Specific heat capacity: c: Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
chemistry (Proportion of "active" molecules or atoms) Arrhenius number = Svante Arrhenius: chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd
A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by ...
Specific heat, the heat capacity per unit mass, describes the energy required to change the temperature of a sample. The low-temperature electronic specific heat of Dirac matter is C ( T → 0 ) ∼ T d {\displaystyle C(T\to 0)\sim T^{d}} which is different from C ( T → 0 ) ∼ T {\displaystyle C(T\to 0)\sim T} encountered for normal metals ...
Specific heat capacity of water [2] The variation can be ignored in contexts when working with objects in narrow ranges of temperature and pressure. For example, the heat capacity of a block of iron weighing one pound is about 204 J/K when measured from a starting temperature T = 25 °C and P = 1 atm of pressure. That approximate value is ...