Search results
Results from the WOW.Com Content Network
Many common test statistics are tests for nested models and can be phrased as log-likelihood ratios or approximations thereof: e.g. the Z-test, the F-test, the G-test, and Pearson's chi-squared test; for an illustration with the one-sample t-test, see below.
An additional reason that the chi-squared distribution is widely used is that it turns up as the large sample distribution of generalized likelihood ratio tests (LRT). [8] LRTs have several desirable properties; in particular, simple LRTs commonly provide the highest power to reject the null hypothesis ( Neyman–Pearson lemma ) and this leads ...
It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution.
Pinheiro and Bates (2000) showed that the true distribution of this likelihood ratio chi-square statistic could be substantially different from the naïve – often dramatically so. [4] The naïve assumptions could give significance probabilities ( p -values) that are, on average, far too large in some cases and far too small in others.
The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom. If the chi-square difference is smaller than the chi-square critical value, the new model fits the data ...
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.