Search results
Results from the WOW.Com Content Network
For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics, the abscissa (/ æ b ˈ s ɪ s. ə /; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system: [1] [2]
The first and second coordinates are called the abscissa and the ordinate of P, respectively; and the point where the axes meet is called the origin of the coordinate system. The coordinates are usually written as two numbers in parentheses, in that order, separated by a comma, as in (3, −10.5) .
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
When the abscissa and ordinate are on the same scale, the identity line forms a 45° angle with the abscissa, and is thus also, informally, called the 45° line. [5] The line is often used as a reference in a 2-dimensional scatter plot comparing two sets of data expected to be identical under ideal conditions. When the corresponding data points ...
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The entire point of referring to these axes as "abscissa and ordinate" is for free yourself from a specific reference. Yes, it is usual -- in cartesian coordinates -- that the abscissa is x and the ordinate is y, but that's not *always* the case (consider for example action occurring in the y-z plane or the z-x plane).
Elementary mathematics encompasses topics from algebra, analysis, arithmetic, calculus, geometry and number theory that are frequently taught at the primary or secondary school level. Subcategories This category has the following 5 subcategories, out of 5 total.
With this simple definition of a curvilinear coordinate system, all the results that follow below are simply applications of standard theorems in differential topology. The transformation functions are such that there's a one-to-one relationship between points in the "old" and "new" coordinates, that is, those functions are bijections , and ...