Search results
Results from the WOW.Com Content Network
The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c. [3] Within the theory of special relativity, the constant c is not only about light; instead it is the highest possible speed for any interaction in nature.
The gravitational weakening of light from high-gravity stars was predicted by John Michell in 1783 and Pierre-Simon Laplace in 1796, using Isaac Newton's concept of light corpuscles (see: emission theory) and who predicted that some stars would have a gravity so strong that light would not be able to escape.
In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer's eye, just like an ordinary lens. In general relativity the path of light depends on the shape of space (i.e. the metric).
If light pressure were the cause of the rotation, then the better the vacuum in the bulb, the less air resistance to movement, and the faster the vanes should spin. In 1901, with a better vacuum pump, Pyotr Lebedev showed that in fact, the radiometer only works when there is low-pressure gas in the bulb, and the vanes stay motionless in a hard ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
In 1905, Henri Poincaré proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations [25] and suggested that, in analogy to an accelerating electrical charge producing electromagnetic waves, accelerated masses in a relativistic field theory of gravity should produce ...
Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny, since the radiation is moving at the speed of light, while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun.
Gravitational time dilation is closely related to gravitational redshift, [4] in which the closer a body emitting light of constant frequency is to a gravitating body, the more its time is slowed by gravitational time dilation, and the lower (more "redshifted") would seem to be the frequency of the emitted light, as measured by a fixed observer.