Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
By selecting this open set to be contained in a coordinate chart, one can reduce the claim to the well-known fact that, in Euclidean geometry, the shortest curve between two points is a line. In particular, as seen by the Euclidean geometry of a coordinate chart around p , any curve from p to q must first pass though a certain "inner radius."
A manifold can be constructed by giving a collection of coordinate charts, that is, a covering by open sets with homeomorphisms to a Euclidean space, and patching functions [clarification needed]: homeomorphisms from one region of Euclidean space to another region if they correspond to the same part of the manifold in two different coordinate ...
In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
Charts n-spheres: n-sphere S n: Hopf chart. Hyperspherical coordinates. Sphere S 2: Spherical coordinates. Stereographic chart Central projection chart Axial projection chart Mercator chart. 3-sphere S 3: Polar chart. Stereographic chart Mercator chart. Euclidean spaces: n-dimensional Euclidean space E n: Cartesian chart: Euclidean plane E 2 ...
Consider the real Euclidean n-dimensional space, that is R n = R × R × ... × R (n times) where R is the set of real numbers and × denotes the Cartesian product, which is a vector space. The coordinates of this space can be denoted by: x = (x 1, x 2,...,x n). Since this is a vector (an element of the vector space), it can be written as: