Search results
Results from the WOW.Com Content Network
A work sampling study usually requires a substantial period of time to complete. There must be enough time available (several weeks or more) to conduct the study. Another characteristic is multiple workers. Work sampling is commonly used to study the activities of multiple workers rather than one worker. The third characteristic is long cycle time.
The Neyman-Pearson lemma, by contrast, offers a rule of thumb for when all the data is collected (and its likelihood ratio known). While originally developed for use in quality control studies in the realm of manufacturing, SPRT has been formulated for use in the computerized testing of human examinees as a termination criterion.
Many common test statistics are tests for nested models and can be phrased as log-likelihood ratios or approximations thereof: e.g. the Z-test, the F-test, the G-test, and Pearson's chi-squared test; for an illustration with the one-sample t-test, see below.
Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling.It is especially useful for bias and variance estimation.
A great advantage of bootstrap is its simplicity. It is a straightforward way to derive estimates of standard errors and confidence intervals for complex estimators of the distribution, such as percentile points, proportions, Odds ratio, and correlation coefficients.
Work measurement is the application of techniques which is designed to establish the time for an average worker to carry out a specified manufacturing task at a defined level of performance. [1] It is concerned with the duration of time it takes to complete a work task assigned to a specific job.
Log probabilities make some mathematical manipulations easier to perform. Optimization. Since most common probability distributions —notably the exponential family —are only logarithmically concave , [ 2 ] [ 3 ] and concavity of the objective function plays a key role in the maximization of a function such as probability, optimizers work ...
We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.