Search results
Results from the WOW.Com Content Network
High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. [10] High harmonics are often generated with pulse durations shorter than that of the driving laser. [11] This is due to the nonlinearity of the generation process, phase matching and ...
Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...
High harmonic generation in krypton.This technology is one of the most used techniques to generate attosecond bursts of light. Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10 −18 s) photon pulses are used to unravel dynamical processes in matter with ...
N-th harmonic generation. Harmonic generation (HG, also called multiple harmonic generation) is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons (equivalently, times the frequency and the wavelength divided by ).
IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function, but it is much more general: instead of constant amplitude and frequency in a simple harmonic component, an IMF can have variable amplitude and frequency along the time axis. The procedure of extracting an IMF is called sifting. The sifting process is as ...
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
In vibrational spectroscopy, an overtone band is the spectral band that occurs in a vibrational spectrum of a molecule when the molecule makes a transition from the ground state (v=0) to the second excited state (v=2), where v is the vibrational quantum number (a non-negative integer) obtained from solving the Schrödinger equation for the molecule.
This is because in second-harmonic generation, only one input light beam is required, but if , two simultaneous beams are required, which can be more difficult to arrange. In practice, the term "sum-frequency generation" usually refers to the less common case in which ω 1 ≠ ω 2 {\displaystyle \omega _{1}\neq \omega _{2}} .