Search results
Results from the WOW.Com Content Network
If D is a simple type of region with its boundary consisting of the curves C 1, C 2, C 3, C 4, half of Green's theorem can be demonstrated. The following is a proof of half of the theorem for the simplified area D, a type I region where C 1 and C 3 are curves connected by vertical lines (possibly of zero length).
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way at least, the importance of Green's work, and the progress made since ...
A special case of this is =, in which case the theorem is the basis for Green's identities. With F → F × G {\displaystyle \mathbf {F} \rightarrow \mathbf {F} \times \mathbf {G} } for two vector fields F and G , where × {\displaystyle \times } denotes a cross product,
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
According to the book "George Green" by D.M. Cannell, William Thomson noticed Murphy's citation of Green's 1828 essay but found it difficult to locate Green's 1828 work; he finally got some copies of Green's 1828 work from William Hopkins in 1845. In 1871 N. M. Ferrers assembled The Mathematical Papers of the late George Green for publication. [7]
#19 Belize Blue Hole. This large, underwater sinkhole formation approximately 300 meters across and 125 meters deep, is famous for its clear blue waters and diverse marine life, making it a ...
Great orthogonality theorem (group theory) Green–Tao theorem (number theory) Green's theorem (vector calculus) Grinberg's theorem (graph theory) Gromov's compactness theorem (Riemannian geometry) Gromov's compactness theorem (symplectic topology) Gromov's theorem on groups of polynomial growth (geometric group theory)