Search results
Results from the WOW.Com Content Network
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...
The ridges of a 2D polygon or 1D tiling are its 0-faces or vertices. The ridges of a 3D polyhedron or plane tiling are its 1-faces or edges. The ridges of a 4D polytope or 3-honeycomb are its 2-faces or simply faces. The ridges of a 5D polytope or 4-honeycomb are its 3-faces or cells.
The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations. Some of the intersecting faces are drawn visually incorrectly because they are not properly intersected visually to show which portions are in front.
The proper rotations, (order-3 rotation on a vertex and face, and order-2 on two edges) and reflection plane (through two faces and one edge) in the symmetry group of the regular tetrahedron The regular tetrahedron has 24 isometries, forming the symmetry group known as full tetrahedral symmetry T d {\displaystyle \mathrm {T} _{\mathrm {d} }} .
Peak, an (n-3)-dimensional element For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.
Another definition by Bernal (1964) is similar to the previous one, in which he was interested in the shapes of holes left in irregular close-packed arrangements of spheres. It is stated as a convex polyhedron with equilateral triangular faces that can be formed by the centers of a collection of congruent spheres, whose tangencies represent ...
It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place. If the bipyramids, the gyroelongated bipyramids, and the trapezohedra are excluded, the disdyakis triacontahedron has the most faces of any other strictly convex polyhedron where every face of the polyhedron has the same ...