Search results
Results from the WOW.Com Content Network
Nitric oxide synthases produce NO by catalysing a five-electron oxidation of a guanidino nitrogen of L-arginine (L-Arg). Oxidation of L-Arg to L-citrulline occurs via two successive monooxygenation reactions producing N ω-hydroxy-L-arginine (NOHLA) as an intermediate. 2 mol of O 2 and 1.5 mol of NADPH are consumed per mole of NO formed. [3]
Recent results, however, show that HAO does not produce nitrite as a direct product of catalysis. This enzyme instead produces nitric oxide and three electrons. Nitric oxide can then be oxidized by other enzymes (or oxygen) to nitrite. In this paradigm, the electron balance for overall metabolism needs to be reconsidered. [7]
In microbial nitrogen metabolism, the occurrence of hydrazine as an intermediate is rare. [36] Hydrazine has been proposed as an enzyme-bound intermediate in the nitrogenase reaction. [37] Recently, using detailed molecular analyses and combining complementary methods, Kartal and coworkers published strong evidence supporting the latter mechanism.
Glutamine synthetase (GS) (EC 6.3.1.2) [3] is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine: Glutamate + ATP + NH 3 → Glutamine + ADP + phosphate Glutamine synthetase catalyzed reaction
The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [ 27 ] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other ...
Nitric oxide (nitrogen monoxide) is a molecule and chemical compound with chemical formula of N O. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. [1] It is a powerful vasodilator with a half-life of a few seconds in the blood.
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.
A large fraction of the chemical elements that occur naturally on the Earth's surface are essential to the structure and metabolism of living things. Four of these elements (hydrogen, carbon, nitrogen, and oxygen) are essential to every living thing and collectively make up 99% of the mass of protoplasm. [1]