Search results
Results from the WOW.Com Content Network
velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio: unitless surface tension: newton per meter (N/m) delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2)
When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = . More Magic Triangle image mnemonics in the style of a cheat-sheet for high-school physics – in the SVG file, hover over a symbol for its meaning and formula.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
Galileo deduced the equation s = 1 / 2 gt 2 in his work geometrically, [4] using the Merton rule, now known as a special case of one of the equations of kinematics. Galileo was the first to show that the path of a projectile is a parabola. Galileo had an understanding of centrifugal force and gave a correct definition of momentum. This ...
Speed, the scalar magnitude of a velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction. [3] [4] [5] To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant ...
The goal of mechanical theory is to solve mechanical problems, such as arise in physics and engineering. Starting from a physical system—such as a mechanism or a star system—a mathematical model is developed in the form of a differential equation. The model can be solved numerically or analytically to determine the motion of the system.
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.
Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume: