enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In digital signal processing, convolution is used to map the impulse response of a real room on a digital audio signal. In electronic music convolution is the imposition of a spectral or rhythmic structure on a sound. Often this envelope or structure is taken from another sound. The convolution of two signals is the filtering of one through the ...

  3. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    where:. DFT N and IDFT N refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and; L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.

  4. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The following is a pseudocode of the algorithm: (Overlap-add algorithm for linear convolution) h = FIR_filter M = length(h) Nx = length(x) N = 8 × 2^ceiling( log2(M) ) (8 times the smallest power of two bigger than filter length M.

  5. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.

  6. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    The use of zero-padding for the convolution in Bluestein's algorithm deserves some additional comment. Suppose we zero-pad to a length M ≥ 2 N –1. This means that a n is extended to an array A n of length M , where A n = a n for 0 ≤ n < N and A n = 0 otherwise—the usual meaning of "zero-padding".

  7. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  8. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    In signal processing, this property on one hand allows sampling a function () by multiplication with , and on the other hand it also allows the periodization of () by convolution with . [7] The Dirac comb identity is a particular case of the Convolution Theorem for tempered distributions.

  9. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    The definition of convolution between two functions and cannot be directly applied to graph signals, because the signal translation is not defined in the context of graphs. [4] However, by replacing the complex exponential shift in classical Fourier transform with the graph Laplacian eigenvectors, convolution of two graph signals can be defined ...