Search results
Results from the WOW.Com Content Network
The orthic triangle, with vertices at the base points of the altitudes of the given triangle, has the smallest perimeter of all triangles inscribed into an acute triangle, hence it is the solution of Fagnano's problem. Fagnano's original proof used calculus methods and an intermediate result given by his father Giulio Carlo de' Toschi di Fagnano.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles , i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: c = a 2 + b 2 − 2 a b cos γ ; {\displaystyle c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;}
In an acute triangle, the sum of the circumradius R and the inradius r is less than half the sum of the shortest sides a and b: [4]: p.105, #2690 + < +, while the reverse inequality holds for an obtuse triangle. For an acute triangle with medians m a, m b, and m c and circumradius R, we have [4]: p.26, #954
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is ...
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [8] or as a special case of De Gua's theorem (for the particular case of acute triangles), [9] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex. The extended base of a triangle (a particular case of an extended side) is the line that contains the base.