Search results
Results from the WOW.Com Content Network
Glycogen is analogous to starch, a glucose polymer in plants, and is sometimes referred to as animal starch, [16] having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked with α(1→6)-linked branches.
Glycogen, the energy reserve of animals, is a more highly branched version of amylopectin. In industry, starch is often converted into sugars, for example by malting. These sugars may be fermented to produce ethanol in the manufacture of beer, whisky and biofuel. In addition, sugars produced from processed starch are used in many processed foods.
To generate energy, the plant hydrolyzes the starch, releasing the glucose subunits. Humans and other animals that eat plant foods also use amylase, an enzyme that assists in breaking down amylopectin, to initiate the hydrolysis of starch. [3] Starch is made of about 70–80% amylopectin by weight, though it varies depending on the source.
Dextrins are a group of low-molecular-weight carbohydrates produced by the hydrolysis of starch [1] and glycogen. [2] Dextrins are mixtures of polymers of D-glucose units linked by α-(1→4) or α-(1→6) glycosidic bonds.
Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]
Starch, cellulose, and glycogen ("animal starch") are common glucose polymers (polysaccharides). Some of these polymers (starch or glycogen) serve as energy stores, while others (cellulose and chitin, which is made from a derivative of glucose) have structural roles. Oligosaccharides of glucose combined with other sugars serve as important ...
Glucans serve a diverse set of functions. Within the cell, certain glucans store energy, fortify cellular structure, behave in recognition, and enhance virulence in pathogenic organisms. [13] Glycogen and starch are notable glucans responsible for storing energy for the cell.
Glycogen is a highly branched structure, consisting of the core protein Glycogenin, surrounded by branches of glucose units, linked together. [2] [12] The branching of glycogen increases its solubility, and allows for a higher number of glucose molecules to be accessible for breakdown at the same time. [2]