Search results
Results from the WOW.Com Content Network
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction , or by using light in a non-uniform medium such as a waveguide .
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. [1] Optics usually describes the behaviour of visible, ultraviolet, and infrared light.
This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index; Dispersion; Transmittance and Transmission coefficient; Absorption; Scattering; Turbidity
In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]
Spatial dispersion can be compared to temporal dispersion, the latter often just called dispersion. Temporal dispersion represents memory effects in systems, commonly seen in optics and electronics. Spatial dispersion on the other hand represents spreading effects and is usually significant only at microscopic length scales.
In optics, optical rotatory dispersion is the variation of the specific rotation of a medium with respect to the wavelength of light.