Search results
Results from the WOW.Com Content Network
Some amides can be reduced to aldehydes in the Sonn-Müller method, but most routes to aldehydes involve a well-chosen organometallic reductant. Lithium aluminum hydride reduces an excess of N,N-disubstituted amides to an aldehyde: [citation needed] R(CO)NRR' + LiAlH 4 → RCHO + HNRR' With further reduction the alcohol is obtained.
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
These possibilities have been used to account for the fact that, for certain substrates like α-tetralone, the group that migrates can sometimes change, depending on the conditions used, to deliver either of the two possible amides. [8] Two proposed reaction mechanisms for the amide formation from a ketone via Schmidt reaction
The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...
Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride (see amide reduction). The Weinreb–Nahm ketone synthesis. The major advantage of this method over addition of organometallic reagents to more typical acyl compounds is that it avoids the common problem of over-addition.
SMEAH is a versatile hydride reducing agent. It readily converts epoxides, aldehydes, ketones, carboxylic acids, esters, acyl halides, and anhydrides to the corresponding alcohols. Nitrogen derivates such as amides, nitriles, imines, and most other organonitrogen compounds are reduced to the corresponding amines. Nitroarenes can be converted to ...
In a prelude to the actual Shapiro reaction, a ketone or an aldehyde (1) is reacted with p-toluenesulfonylhydrazide [6] (2) to form a p-toluenesulfonylhydrazone (or tosylhydrazone) which is a hydrazone (3).
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.