Search results
Results from the WOW.Com Content Network
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
In optics and lens design, the Abbe number, also known as the Vd-number or constringence of a transparent material, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of Vd indicating low dispersion.
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
The dispersion staining is an analytical technique used in light microscopy that takes advantage of the differences in the dispersion curve of the refractive index of an unknown material relative to a standard material with a known dispersion curve to identify or characterize that unknown material. These differences become manifest as a color ...
The Material dispersion in optics section explains the effect of dispersion on refraction (i.e. it gives rise to angular dispersion). The other sections don't relate to refraction at all, except for the very small Dispersion in gemology and Dispersion in imaging sections. Maybe these should be sub-sections of Material dispersion in optics?
Other dispersion models that can be used to derive n and k, such as the Tauc–Lorentz model, can be found in the literature. [19] [20] Two well-known models—Cauchy and Sellmeier—provide empirical expressions for n valid over a limited measurement range, and are only useful for non-absorbing films where k=0. Consequently, the Forouhi ...
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency