enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stratified randomization - Wikipedia

    en.wikipedia.org/wiki/Stratified_randomization

    Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...

  3. Stratified sampling - Wikipedia

    en.wikipedia.org/wiki/Stratified_sampling

    In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. Stratified sampling example In statistical surveys , when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation ( stratum ) independently.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.

  5. Stratification (clinical trials) - Wikipedia

    en.wikipedia.org/wiki/Stratification_(clinical...

    Proportionate stratified sampling involves selecting participants from each stratum in proportions that match the general population. [1] This method can be used to improve the sample's representation of the population, by ensuring that characteristics (and their proportions) of the study sample reflect the characteristics of the population.

  6. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    importance sampling; stratified sampling; moment matching; conditional Monte Carlo; and quasi random variables (in Quasi-Monte Carlo method) For simulation with black-box models subset simulation and line sampling can also be used. Under these headings are a variety of specialized techniques; for example, particle transport simulations make ...

  7. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    In general, the Monte Carlo methods are used in mathematics to solve various problems by generating suitable random numbers (see also Random number generation) and observing that fraction of the numbers that obeys some property or properties. The method is useful for obtaining numerical solutions to problems too complicated to solve analytically.

  8. Multistage sampling - Wikipedia

    en.wikipedia.org/wiki/Multistage_sampling

    In stratified sampling, a random sample is drawn from all the strata, where in cluster sampling only the selected clusters are studied, either in single- or multi-stage. Advantages. Cost and speed that the survey can be done in; Convenience of finding the survey sample; Normally more accurate than cluster sampling for the same size sample ...

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.