Search results
Results from the WOW.Com Content Network
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [4]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Hyperparameter may refer to: Hyperparameter (machine learning) Hyperparameter (Bayesian statistics) This page was last edited on 5 October 2024, at 04:17 (UTC). Text ...
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.
In computer programming, two notions of parameter are commonly used, and are referred to as parameters and arguments—or more formally as a formal parameter and an actual parameter. For example, in the definition of a function such as y = f(x) = x + 2, x is the formal parameter (the parameter) of the defined function.
where is a hyperparameter that controls how much the algorithm will prefer simpler functions over functions that fit the data better. A two-dimensional manifold embedded in three-dimensional space (left). Manifold regularization attempts to learn a function that is smooth on the unrolled manifold (right).