Search results
Results from the WOW.Com Content Network
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
var x1 = 0; // A global variable, because it is not in any function let x2 = 0; // Also global, this time because it is not in any block function f {var z = 'foxes', r = 'birds'; // 2 local variables m = 'fish'; // global, because it wasn't declared anywhere before function child {var r = 'monkeys'; // This variable is local and does not affect the "birds" r of the parent function. z ...
The format of an n-bit posit is given a label of "posit" followed by the decimal digits of n (e.g., the 16-bit posit format is "posit16") and consists of four sequential fields: sign : 1 bit, representing an unsigned integer s
where a is an array object, the function randomInt(x) chooses a random integer between 1 and x, inclusive, and swapEntries(i, j) swaps the ith and jth entries in the array. In the preceding example, 52 and 53 are magic numbers, also not clearly related to each other. It is considered better programming style to write the following:
Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions. When high performance is not a requirement, but high precision is, variable length arithmetic can prove useful, though the actual accuracy of the result may not be known.
Immediately invoked function expressions may be written in a number of different ways. [3] A common convention is to enclose the function expression – and optionally its invocation operator – with the grouping operator, [ 4 ] in parentheses, to tell the parser explicitly to expect an expression.
Decimal64 supports 'normal' values that can have 16 digit precision from ±1.000 000 000 000 000 × 10 ^ −383 to ±9.999 999 999 999 999 × 10 ^ 384, plus 'denormal' values with ramp-down relative precision down to ±1.×10 −398, signed zeros, signed infinities and NaN (Not a Number). This format supports two different encodings.
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.