Search results
Results from the WOW.Com Content Network
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
The validity of a digit sequence containing a check digit is defined over a quasigroup. A quasigroup table ready for use can be taken from Damm's dissertation (pages 98, 106, 111). [3] It is useful if each main diagonal entry is 0, [1] because it simplifies the check digit calculation.
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.
The check digit is computed as follows: Drop the check digit from the number (if it's already present). This leaves the payload. Start with the payload digits. Moving from right to left, double every second digit, starting from the last digit. If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits).
If the last digit is 0. 110 (The original number) 11 0 (Take the last digit of the number, and check if it is 0 or 5) 11 0 (If it is 0, take the remaining digits, discarding the last) 11 × 2 = 22 (Multiply the result by 2) 110 ÷ 5 = 22 (The result is the same as the original number divided by 5) If the last digit is 5. 85 (The original number)
The slashed zero 0︀ is a representation of the Arabic digit "0" (zero) with a slash through it. This variant zero glyph is often used to distinguish the digit "zero" ("0") from the Latin script letter " O " anywhere that the distinction needs emphasis, particularly in encoding systems, scientific and engineering applications, computer ...
In many languages (such as C, which introduced this notation), this is not a separate escape sequence, but an octal escape sequence with a single octal digit 0; as a consequence, \0 must not be followed by any of the digits 0 through 7; otherwise it is interpreted as the start of a longer octal escape sequence. [9]
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.