Search results
Results from the WOW.Com Content Network
p is the hydrostatic pressure (Pa), ρ is the fluid density (kg/m 3), g is gravitational acceleration (m/s 2), z is the height (parallel to the direction of gravity) of the test area (m), 0 is the height of the zero reference point of the pressure (m) p_0 is the hydrostatic pressure field (Pa) along x and y at the zero reference point
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics behind is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim , and the ...
So pressure increases with depth below the surface of a liquid, as z denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have different pressures on its top and bottom, with the pressure on the bottom being greater. This difference in pressure causes the upward buoyancy force.
The gas which comprises an atmosphere is usually assumed to be an ideal gas, which is to say: = Where ρ is mass density, M is average molecular weight, P is pressure, T is temperature, and R is the ideal gas constant. The gas is held in place by so-called "hydrostatic" forces. That is to say, for a particular layer of gas at some altitude: the ...
The only variable quantity of the ideal gas law independent of density and pressure is temperature. This scaled quantity is known as virtual temperature, and it allows for the use of the dry-air equation of state for moist air. [5] Temperature has an inverse proportionality to density.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Boussinesq flows are common in nature (such as atmospheric fronts, oceanic circulation, katabatic winds), industry (dense gas dispersion, fume cupboard ventilation), and the built environment (natural ventilation, central heating). The approximation can be used to simplify the equations describing such flows, whilst still describing the flow ...