Search results
Results from the WOW.Com Content Network
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
By means of integration by parts, a reduction formula can be obtained. Using the identity = , we have for all , = () () = . Integrating the second integral by parts, with:
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives .
Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = a n + g n / 2 , g n + 1 = √ a n g n hold.
When the Abel–Plana formula is applied to the defining series of the polylogarithm, a Hermite-type integral representation results that is valid for all complex z and for all complex s: = + (, ) () + ( ) (+) / where Γ is the upper incomplete gamma-function.
For n = 1 this results in the already known recurrence formula, just arranged differently, and with n = 2 it forms the recurrence relation for all even or all odd indexed Chebyshev polynomials (depending on the parity of the lowest m) which implies the evenness or oddness of these polynomials.