enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulsar - Wikipedia

    en.wikipedia.org/wiki/Pulsar

    Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437−4715). All pulsars have a J name that provides more precise coordinates of its location in the sky. [38]

  3. PSR B1919+21 - Wikipedia

    en.wikipedia.org/wiki/PSR_B1919+21

    PSR B1919+21 is a pulsar with a period of 1.3373 seconds [4] and a pulse width of 0.04 seconds. Discovered by Jocelyn Bell Burnell on 28 November 1967, it is the first discovered radio pulsar. [5]

  4. PSR B1257+12 - Wikipedia

    en.wikipedia.org/wiki/PSR_B1257+12

    The convention that arose for designating pulsars was that of using the letters PSR (Pulsating Source of Radio) followed by the pulsar's right ascension and degrees of declination. The modern convention prefixes the older numbers with a B meaning the coordinates are for the 1950.0 epoch. All new pulsars have a J indicating 2000.0 coordinates ...

  5. PSR B1937+21 - Wikipedia

    en.wikipedia.org/wiki/PSR_B1937+21

    PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. [1] The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch.

  6. Crab Pulsar - Wikipedia

    en.wikipedia.org/wiki/Crab_Pulsar

    [18] [19] The discovery of the pulsar with such a short period proved that pulsars are rotating neutron stars (not pulsating white dwarfs, as many scientists suggested). Soon after the discovery of the Crab Pulsar, David Richards discovered (using the Arecibo Telescope) that it spins down and, therefore, loses its rotational energy.

  7. Hulse–Taylor pulsar - Wikipedia

    en.wikipedia.org/wiki/Hulse–Taylor_pulsar

    Using the Arecibo 305 m dish, Hulse and Taylor detected pulsed radio emissions and thus identified the source as a pulsar, a rapidly rotating, highly magnetized neutron star. The neutron star rotates on its axis 17 times per second; thus the pulse period is 59 milliseconds .

  8. Millisecond pulsar - Wikipedia

    en.wikipedia.org/wiki/Millisecond_pulsar

    Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading hypothesis for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system.

  9. Binary pulsar - Wikipedia

    en.wikipedia.org/wiki/Binary_pulsar

    An intermediate-mass binary pulsar (IMBP) is a pulsar-white dwarf binary system with a relatively long spin period of around 10–200 ms consisting of a white dwarf with a relatively high mass of approximately . [7] The spin periods, magnetic field strengths, and orbital eccentricities of IMBPs are significantly larger than those of low mass binary pulsars (LMBPs). [7]