Search results
Results from the WOW.Com Content Network
All the SI prefixes are commonly applied to the watt-hour: a kilowatt-hour (kWh) is 1,000 Wh; a megawatt-hour (MWh) is 1 million Wh; a milliwatt-hour (mWh) is 1/1,000 Wh and so on. The kilowatt-hour is commonly used by electrical energy providers for purposes of billing, since the monthly energy consumption of a typical residential customer ...
The tonne of oil equivalent (toe) is a unit of energy defined as the amount of energy released by burning one tonne of crude oil.It is approximately 42 gigajoules or 11.630 megawatt-hours, although as different crude oils have different calorific values, the exact value is defined by convention; several slightly different definitions exist.
Full Load hour is a measure of the degree of utilisation of a technical system. [1] [2] [3] Full load hours refer to the time for which a plant would have to be operated at nominal power in order to convert the same amount of electrical work as the plant has actually converted within a defined period of time, during which breaks in operation or partial load operation can also occur.
Certain onshore wind farms can reach capacity factors of over 60%, for example the 44 MW Eolo plant in Nicaragua had a net generation of 232.132 GWh in 2015, equivalent to a capacity factor of 60.2%, [7] while United States annual capacity factors from 2013 through 2016 range from 32.2% to 34.7%.
In the context of domestic PV installations, the kilowatt (symbol kW) is the most common unit for nominal power, for example P peak = 1 kW. Colloquial English sometimes conflates the quantity power and its unit by using the non-standard label watt-peak (symbol W p), possibly prefixed as in kilowatt-peak (kW p), megawatt-peak (MW p), etc.
Since this is a measurement of mass, any conversion to barrels of oil equivalent depends on the density of the oil in question, as well as the energy content. Typically 1 tonne of oil has a volume of 1.08 to 1.19 cubic metres (6.8 to 7.5 bbl).
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [1] [2] [3] It is used to quantify the rate of energy transfer.
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.