enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trinomial tree - Wikipedia

    en.wikipedia.org/wiki/Trinomial_Tree

    The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...

  3. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    Here the price of the option is its discounted expected value; see risk neutrality and rational pricing. The technique applied then, is (1) to generate a large number of possible, but random, price paths for the underlying (or underlyings) via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for ...

  4. Heath–Jarrow–Morton framework - Wikipedia

    en.wikipedia.org/wiki/Heath–Jarrow–Morton...

    When the volatility and drift of the instantaneous forward rate are assumed to be deterministic, this is known as the Gaussian Heath–Jarrow–Morton (HJM) model of forward rates. [ 1 ] : 394 For direct modeling of simple forward rates the Brace–Gatarek–Musiela model represents an example.

  5. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    In quantitative finance, a lattice model [1] is a mathematical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options , a typical application would correspond to the pricing of an American-style option , where a decision to exercise is allowed at the closing of any calendar day ...

  6. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  7. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.

  8. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

  9. Van Westendorp's Price Sensitivity Meter - Wikipedia

    en.wikipedia.org/wiki/Van_Westendorp's_Price...

    Price Sensitivity Meter (van Westendorp) The Price Sensitivity Meter (PSM) is a market technique for determining consumer price preferences. It was introduced in 1976 by Dutch economist Peter van Westendorp. The technique has been used by a wide variety of researchers in the market research industry. It historically has been promoted by many ...