enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Continuous_knapsack_problem

    In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.

  3. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The knapsack problem is interesting from the perspective of computer science for many reasons: The decision problem form of the knapsack problem (Can a value of at least V be achieved without exceeding the weight W?) is NP-complete, thus there is no known algorithm that is both correct and fast (polynomial-time) in all cases.

  4. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.

  5. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  6. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]

  7. Fully polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Fully_polynomial-time...

    Here are some examples of benevolent problems, that have an FPTAS by the above theorem. [6] 1. The 0-1 knapsack problem is benevolent. Here, we have a=2: each input is a 2-vector (weight, value). There is a DP with b=2: each state encodes (current weight, current value).

  8. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)

  9. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...