Search results
Results from the WOW.Com Content Network
In particle physics, strangeness (symbol S) [1] [2] is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions that occur in a short period of time. The strangeness of a particle is defined as: = (¯) where n s
The discovery of hadrons with the internal quantum number "strangeness" marks the beginning of a most exciting epoch in particle physics that even now, fifty years later, has not yet found its conclusion ... by and large experiments have driven the development, and that major discoveries came unexpectedly or even against expectations expressed ...
A strange particle is an elementary particle with a strangeness quantum number different from zero. Strange particles are members of a large family of elementary particles carrying the quantum number of strangeness, including several cases where the quantum number is hidden in a strange/anti-strange pair, for example in the Φ meson.
In high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties. [1] Unlike up and down quarks , from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a ...
The terms "strange" and "strangeness" predate the discovery of the quark, but continued to be used after its discovery for the sake of continuity (i.e. the strangeness of each type of hadron remained the same); strangeness of anti-particles being referred to as +1, and particles as −1 as per the original definition.
The first strange particle (a particle containing a strange quark) was discovered by George Rochester and Clifford Butler in Department of Physics and Astronomy, University of Manchester in 1947 , with the existence of the strange quark itself (and that of the up and down quarks) postulated in 1964 by Murray Gell-Mann and George Zweig to ...
According to the 2022 Particle Physics Review, the charmed quark has a mass of 1.27 ± 0.02 GeV/c 2, [b] a charge of + 2 / 3 e, and a charm of +1. [10] The charm quark is more massive than the strange quark: the ratio between the masses of the two is about 11.76 +0.05 −0.10. [10] The CKM matrix describes the weak interaction of quarks ...
A strangelet (pronounced / ˈ s t r eɪ n dʒ. l ɪ t /) is a hypothetical particle consisting of a bound state of roughly equal numbers of up, down, and strange quarks.An equivalent description is that a strangelet is a small fragment of strange matter, small enough to be considered a particle.