enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Seidel (1991) gave an algorithm for low-dimensional linear programming that may be adapted to the LP-type problem framework. Seidel's algorithm takes as input the set S and a separate set X (initially empty) of elements known to belong to the optimal basis. It then considers the remaining elements one-by-one in a random order, performing ...

  3. Randomized algorithm - Wikipedia

    en.wikipedia.org/wiki/Randomized_algorithm

    A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...

  4. Stochastic optimization - Wikipedia

    en.wikipedia.org/wiki/Stochastic_optimization

    swarm algorithms; evolutionary algorithms. genetic algorithms by Holland (1975) [19] evolution strategies; cascade object optimization & modification algorithm (2016) [20] In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21]

  5. Polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time...

    Some problems which do not have a PTAS may admit a randomized algorithm with similar properties, a polynomial-time randomized approximation scheme or PRAS.A PRAS is an algorithm which takes an instance of an optimization or counting problem and a parameter ε > 0 and, in polynomial time, produces a solution that has a high probability of being within a factor ε of optimal.

  6. Monte Carlo algorithm - Wikipedia

    en.wikipedia.org/wiki/Monte_carlo_algorithm

    In computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain (typically small) probability. Two examples of such algorithms are the Karger–Stein algorithm [ 1 ] and the Monte Carlo algorithm for minimum feedback arc set .

  7. Yao's principle - Wikipedia

    en.wikipedia.org/wiki/Yao's_principle

    Any randomized algorithm may be interpreted as a randomized choice among deterministic algorithms, and thus as a mixed strategy for Alice. Similarly, a non-random algorithm may be thought of as a pure strategy for Alice. In any two-player zero-sum game, if one player chooses a mixed strategy, then the other player has an optimal pure strategy ...

  8. Random assignment - Wikipedia

    en.wikipedia.org/wiki/Random_assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. [1]

  9. Random coordinate descent - Wikipedia

    en.wikipedia.org/wiki/Random_coordinate_descent

    Randomized (Block) Coordinate Descent Method is an optimization algorithm popularized by Nesterov (2010) and Richtárik and Takáč (2011). The first analysis of this method, when applied to the problem of minimizing a smooth convex function, was performed by Nesterov (2010). [1]