Search results
Results from the WOW.Com Content Network
The void pointer, or void*, is supported in ANSI C and C++ as a generic pointer type. A pointer to void can store the address of any object (not function), [ a ] and, in C, is implicitly converted to any other object pointer type on assignment, but it must be explicitly cast if dereferenced.
C and C++ also support the pointer to void type (specified as void *), but this is an unrelated notion. Variables of this type are pointers to data of an unspecified type, so in this context (but not the others) void * acts roughly like a universal or top type .
In conditional contexts, null pointer values evaluate to false, while all other pointer values evaluate to true. Void pointers (void *) point to objects of unspecified type, and can therefore be used as "generic" data pointers. Since the size and type of the pointed-to object is not known, void pointers cannot be dereferenced, nor is pointer ...
Various rules in the C standard make unsigned char the basic type used for arrays suitable to store arbitrary non-bit-field objects: its lack of padding bits and trap representations, the definition of object representation, [7] and the possibility of aliasing. [12] The actual size and behavior of floating-point types also vary by implementation.
One commonly encountered difference is C being more weakly-typed regarding pointers. Specifically, C allows a void* pointer to be assigned to any pointer type without a cast, while C++ does not; this idiom appears often in C code using malloc memory allocation, [9] or in the passing of context pointers to the POSIX pthreads API, and other ...
A snippet of C code which prints "Hello, World!". The syntax of the C programming language is the set of rules governing writing of software in C. It is designed to allow for programs that are extremely terse, have a close relationship with the resulting object code, and yet provide relatively high-level data abstraction.
malloc returns a void pointer (void *), which indicates that it is a pointer to a region of unknown data type. The use of casting is required in C++ due to the strong type system, whereas this is not the case in C. One may "cast" (see type conversion) this pointer to a specific type:
In the C programming language, restrict is a keyword, introduced by the C99 standard, [1] that can be used in pointer declarations. By adding this type qualifier, a programmer hints to the compiler that for the lifetime of the pointer, no other pointer will be used to access the object to which it points. This allows the compiler to make ...