Search results
Results from the WOW.Com Content Network
A plane mirror showing the virtual image of an urn nearby. A diagram of an object in two plane mirrors that formed an angle bigger than 90 degrees, causing the object to have three reflections. A plane mirror is a mirror with a flat reflective surface.
In geometry, the mirror image of an object or two-dimensional figure is the virtual image formed by reflection in a plane mirror; it is of the same size as the original object, yet different, unless the object or figure has reflection symmetry (also known as a P-symmetry).
The formation of the virtual image A' of the object A via a plane mirror. For people looking at the mirror, the object A is apparently located at the position of A' although it does not physically exist there. The magnification of the virtual image formed by the plane mirror is 1. Top: The formation of a virtual image using a diverging lens.
The image size is the same as the object size. (The magnification of a flat mirror is equal to one.) The law also implies that mirror images are parity inverted, which is perceived as a left-right inversion. Mirrors with curved surfaces can be modeled by ray tracing and using the law of reflection at each point on the surface.
Bottom: The formation of a real image using a concave mirror. In both diagrams, f is the focal point, O is the object, and I is the image. Solid blue lines indicate light rays. It can be seen that the image is formed by actual light rays and thus can form a visible image on a screen placed at the position of the image.
For flat mirrors, the law of reflection implies that images of objects are upright and the same distance behind the mirror as the objects are in front of the mirror. The image size is the same as the object size. The law also implies that mirror images are parity inverted, which we perceive as a left-right inversion. Images formed from ...
The ratio of the height of the image to the height of the object is the magnification. The spatial extent of the image surface and the focal length of the lens determines the field of view of the lens. Image formation of mirror these have a center of curvature and its focal length of the mirror is half of the center of curvature.
The two principal planes of a lens have the property that a ray emerging from the lens appears to have crossed the rear principal plane at the same distance from the optical axis that the ray appeared to have crossed the front principal plane, as viewed from the front of the lens. This means that the lens can be treated as if all of the ...