enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobson radical - Wikipedia

    en.wikipedia.org/wiki/Jacobson_radical

    For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...

  3. Jacobson's conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobson's_conjecture

    In abstract algebra, Jacobson's conjecture is an open problem in ring theory concerning the intersection of powers of the Jacobson radical of a Noetherian ring.. It has only been proven for special types of Noetherian rings, so far.

  4. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...

  5. Radical of a ring - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_ring

    If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.

  6. Hopkins–Levitzki theorem - Wikipedia

    en.wikipedia.org/wiki/Hopkins–Levitzki_theorem

    In abstract algebra, in particular ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical.

  7. Nakayama's lemma - Wikipedia

    en.wikipedia.org/wiki/Nakayama's_lemma

    The resulting theorem is sometimes known as the Jacobson–Azumaya theorem. [13] Let J(R) be the Jacobson radical of R. If U is a right module over a ring, R, and I is a right ideal in R, then define U·I to be the set of all (finite) sums of elements of the form u·i, where · is simply the action of R on U. Necessarily, U·I is a submodule of U.

  8. Radical of a module - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_module

    In mathematics, in the theory of modules, the radical of a module is a component in the theory of structure and classification. It is a generalization of the Jacobson radical for rings . In many ways, it is the dual notion to that of the socle soc( M ) of M .

  9. Jacobson ring - Wikipedia

    en.wikipedia.org/wiki/Jacobson_ring

    Any principal ideal domain or Dedekind domain with Jacobson radical zero is a Jacobson ring. In principal ideal domains and Dedekind domains, the nonzero prime ideals are already maximal, so the only thing to check is if the zero ideal is an intersection of maximal ideals. Asking for the Jacobson radical to be zero guarantees this.