Search results
Results from the WOW.Com Content Network
Transpiration rates of plants can be measured by a number of techniques, including potometers, lysimeters, porometers, photosynthesis systems and thermometric sap flow sensors. Isotope measurements indicate transpiration is the larger component of evapotranspiration. [11]
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
Functionally, in addition to carrying out photosynthesis, the leaf is the principal site of transpiration, providing the energy required to draw the transpiration stream up from the roots, and guttation. Many conifers have thin needle-like or scale-like leaves that can be advantageous in cold climates with frequent snow and frost. [10]
Photosynthesis depends on the diffusion of carbon dioxide (CO 2) from the air through the stomata into the mesophyll tissues. Oxygen (O 2), produced as a byproduct of photosynthesis, exits the plant via the stomata. When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by ...
The pineapple is an example of a CAM plant.. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions [1] that allows a plant to photosynthesize during the day, but only exchange gases at night.
Evapotranspiration is a combination of evaporation and transpiration, measured in order to better understand crop water requirements, irrigation scheduling, [4] and watershed management. [5] The two key components of evapotranspiration are: Evaporation: the movement of water directly to the air from sources such as the soil and water bodies.
Of the 150 kWh falling on the crown, 1% is used for photosynthesis, 10% reflected as light energy, 5 to 10% as sensible heat with the remaining 79 to 84% entering the process of transpiration. [3] If a larger tree has a sufficient water supply, it can evaporate more than 100 L of water a day.
Since photosynthesis, transpiration and stomatal conductance are an integral part of basic plant physiology, estimates of these parameters can be used to investigate numerous aspects of plant biology. The plant-scientific community has generally accepted photosynthetic systems as reliable and accurate tools to assist research.