enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String diagram - Wikipedia

    en.wikipedia.org/wiki/String_diagram

    the tensor of two diagrams as the composition of whiskerings ′ = (′) ′. Note that because the diagram is in generic form (i.e. each layer contains exactly one box) the definition of tensor is necessarily biased: the diagram on the left hand-side comes above the one on the right-hand side.

  3. Penrose graphical notation - Wikipedia

    en.wikipedia.org/wiki/Penrose_graphical_notation

    Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]

  4. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  5. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  6. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The earliest foundation of tensor theory – tensor index notation. [1] Order of a tensor The components of a tensor with respect to a basis is an indexed array. The order of a tensor is the number of indices needed. Some texts may refer to the tensor order using the term degree or rank. Rank of a tensor The rank of a tensor is the minimum ...

  7. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.

  8. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    Hamilton's tensor is actually the absolute value on the quaternion algebra, which makes it a normed vector space. Hamilton defined tensor as a positive numerical quantity, or, more properly, signless number. [12] [13] [14] A tensor can be thought of as a positive scalar. [15] The "tensor" can be thought of as representing a "stretching factor ...

  9. Tensor decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_decomposition

    A multi-way graph with K perspectives is a collection of K matrices ,..... with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index ...