enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm , but it is not complete for this norm.

  3. Dvoretzky's theorem - Wikipedia

    en.wikipedia.org/wiki/Dvoretzky's_theorem

    In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, [1] answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean .

  4. Riesz's lemma - Wikipedia

    en.wikipedia.org/wiki/Riesz's_lemma

    If is a reflexive Banach space then this conclusion is also true when = [2]. Metric reformulation. As usual, let (,):= ‖ ‖ denote the canonical metric induced by the norm, call the set {: ‖ ‖ =} of all vectors that are a distance of from the origin the unit sphere, and denote the distance from a point to the set by (,) := (,) = ‖ ‖.

  5. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm.

  6. List of vector spaces in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_vector_spaces_in...

    This is a list of vector spaces in abstract mathematics, by Wikipedia page. Banach space; Besov space; Bochner space; Dual space; Euclidean space; Fock space; Fréchet space; Hardy space; Hilbert space; Hölder space; LF-space; L p space; Minkowski space; Montel space; Morrey–Campanato space; Orlicz space; Riesz space; Schwartz space; Sobolev ...

  7. Category:Normed spaces - Wikipedia

    en.wikipedia.org/wiki/Category:Normed_spaces

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Normed vector space; C. C space; Cocompact embedding; F.

  8. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    More generally, a vector space over a field also has the structure of a vector space over a subfield of that field. Linear operations, given in a linear space by definition, lead to such notions as straight lines (and planes, and other linear subspaces); parallel lines; ellipses (and ellipsoids).

  9. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]