Search results
Results from the WOW.Com Content Network
Physical weathering, also called mechanical weathering or disaggregation, is the class of processes that causes the disintegration of rocks without chemical change. Physical weathering involves the breakdown of rocks into smaller fragments through processes such as expansion and contraction, mainly due to temperature changes.
Abrasion is a process of weathering that occurs when material being transported wears away at a surface over time, commonly occurring with ice and glaciers. The primary process of abrasion is physical weathering. Its the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials.
Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice. The term serves as an umbrella term for a variety of processes, such as frost shattering, frost wedging, and cryofracturing.
Grus is an accumulation of angular, coarse-grained fragments (particles of sand and gravel) resulting from the granular disintegration by the processes of chemical and mechanical weathering of crystalline rocks (most notably granitoids) generally in an arid or semiarid region. [1] Grus sand, when cemented into a sandstone, will form an arkose.
Case hardening is a weathering phenomenon of rock surface induration.It is observed commonly in: felsic alkaline rocks, such as nepheline syenite, phonolite and trachyte; pyroclastic rocks, as pyroclastic flow deposit, fine air-fall deposits and vent-filling pyroclastic deposits; sedimentary rocks, as sandstone and mudstone.
Spheroidal weathering has often been incorrectly attributed solely to various types of physical weathering. [1] [2] [5] Frequently, erosion has removed the layers of altered rock and other saprolite surrounding corestones that were produced by spheroidal weathering. This leaves many corestones as freestanding boulders on the ground's surface.
Many explanations have been proposed for honeycomb and other cavernous weathering. These explanations include marine abrasion; wind corrosion; mechanical weathering resulting from short-term temperature variations; chemical weathering of the interior of the rock (core-softening) under a protective crust (case-hardening) followed by mechanical removal of the softened material; biogeochemical ...
The formation of scree and talus deposits is the result of physical and chemical weathering acting on a rock face, and erosive processes transporting the material downslope. [citation needed] In high-altitude arctic and subarctic regions, scree slopes and talus deposits are typically adjacent to hills and river valleys.