Ad
related to: odd symmetry examples for kidseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Activities & Crafts
Search results
Results from the WOW.Com Content Network
Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on. The given examples are real functions, to illustrate the symmetry of their graphs .
Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin. Examples of odd functions are x, x 3, sin(x), sinh(x), and erf(x).
Examples include even and odd functions in calculus, symmetric groups in abstract algebra, symmetric matrices in linear algebra, and Galois groups in Galois theory. In statistics , symmetry also manifests as symmetric probability distributions , and as skewness —the asymmetry of distributions.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation , Coxeter notation , [ 1 ] orbifold notation , [ 2 ] and order.
For n odd, the dihedral group is centerless, so any element defines a non-trivial inner automorphism; for n even, the rotation by 180° (reflection through the origin) is the non-trivial element of the center. Thus for n odd, the inner automorphism group has order 2n, and for n even (other than n = 2) the inner automorphism group has order n.
For odd n, S 2n contains an inversion, denoted C i or S 2. S 2n is the direct product: S 2n = C n × S 2, if n is odd. For any n, if odd p is a divisor of n, then S 2n/p is a subgroup of S 2n, index p. For example S 4 is a subgroup of S 12, index 3.
The odd graphs have high odd girth, meaning that they contain long odd-length cycles but no short ones. However their name comes not from this property, but from the fact that each edge in the graph has an "odd man out", an element that does not participate in the two sets connected by the edge.
Ad
related to: odd symmetry examples for kidseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife