enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    Bolts are correctly torqued to maintain the friction. The shear force only becomes relevant when the bolts are not torqued. A bolt with property class 12.9 has a tensile strength of 1200 MPa (1 MPa = 1 N/mm 2 ) or 1.2 kN/mm 2 and the yield strength is 0.90 times tensile strength, 1080 MPa in this case.

  5. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    t. e. In continuum mechanics, the maximum distortion energy criterion (also von Mises yield criterion[1]) states that yielding of a ductile material begins when the second invariant of deviatoric stress reaches a critical value. [2] It is a part of plasticity theory that mostly applies to ductile materials, such as some metals.

  6. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    Contact mechanics is part of mechanical engineering. The physical and mathematical formulation of the subject is built upon the mechanics of materials and continuum mechanics and focuses on computations involving elastic, viscoelastic, and plastic bodies in static or dynamic contact.

  7. Huber's equation - Wikipedia

    en.wikipedia.org/wiki/Huber's_equation

    Huber's equation. Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]

  8. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    G = τ / γ = E / [2 (1 + ν)] Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1] where. = shear stress. is the force which acts. is the area on which the force ...

  9. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The CRSS is the value of resolved shear stress at which yielding of the grain occurs, marking the onset of plastic deformation. CRSS, therefore, is a material property and is not dependent on the applied load or grain orientation. The CRSS is related to the observed yield strength of the material by the maximum value of the Schmid factor: