enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase portrait - Wikipedia

    en.wikipedia.org/wiki/Phase_portrait

    In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.

  3. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    Real, repeated eigenvalues require solving the coefficient matrix with an unknown vector and the first eigenvector to generate the second solution of a two-by-two system. However, if the matrix is symmetric, it is possible to use the orthogonal eigenvector to generate the second solution.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The spectrum of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the spectral radius of the matrix.

  6. Bifurcation theory - Wikipedia

    en.wikipedia.org/wiki/Bifurcation_theory

    Phase portrait showing saddle-node bifurcation. Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations.

  7. Hopf bifurcation - Wikipedia

    en.wikipedia.org/wiki/Hopf_bifurcation

    Complex eigenvalues of an arbitrary map (dots). In case of the Hopf bifurcation, two complex conjugate eigenvalues cross the imaginary axis. In the mathematical theory of bifurcations, a Hopf bifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. [1]

  8. Intrinsic parity - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_parity

    In quantum mechanics, the intrinsic parity is a phase factor that arises as an eigenvalue of the parity operation ′ = (a reflection about the origin). [1] To see that the parity's eigenvalues are phase factors, we assume an eigenstate of the parity operation (this is realized because the intrinsic parity is a property of a particle species) and use the fact that two parity transformations ...

  9. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    If a matrix A is both Hermitian and unitary, then it can only have eigenvalues of , and therefore = +, where + is the projector onto the subspace with eigenvalue +1, and is the projector onto the subspace with eigenvalue ; By the completeness of the eigenbasis, + + =.