Search results
Results from the WOW.Com Content Network
In C++ pointers to non-static members of a class can be defined. If a class C has a member T a then &C::a is a pointer to the member a of type T C::*. This member can be an object or a function. [16] They can be used on the right-hand side of operators .* and ->* to access the corresponding member.
C# has and allows pointers to selected types (some primitives, enums, strings, pointers, and even arrays and structs if they contain only types that can be pointed [14]) in unsafe context: methods and codeblock marked unsafe. These are syntactically the same as pointers in C and C++. However, runtime-checking is disabled inside unsafe blocks.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
In C++, classes can be forward-declared if you only need to use the pointer-to-that-class type (since all object pointers are the same size, and this is what the compiler cares about). This is especially useful inside class definitions, e.g. if a class contains a member that is a pointer (or a reference) to another class.
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
Note that, when there is a data member that is a pointer or reference to another object, then it is possible to mutate the object pointed to or referenced only within a non-const method. C++ also provides abstract (as opposed to bitwise) immutability via the mutable keyword, which lets a member variable be changed from within a const method.
Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection. [1] [2]