enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transesterification - Wikipedia

    en.wikipedia.org/wiki/Transesterification

    Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.

  3. Ester hydrolysis - Wikipedia

    en.wikipedia.org/wiki/Ester_hydrolysis

    Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]

  4. Saponification - Wikipedia

    en.wikipedia.org/wiki/Saponification

    The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol:

  5. Carbonyl reduction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_reduction

    The final step in the reduction of carboxylic acids and esters is hydrolysis of the aluminium alcoxide. [8] Esters (and amides) are more easily reduced than the parent carboxylic acids. Their reduction affords alcohols and amines, respectively. [9] The idealized equation for the reduction of an ester by lithium aluminium hydride is:

  6. Ortho ester - Wikipedia

    en.wikipedia.org/wiki/Ortho_ester

    In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR') 3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived.

  7. Bouveault–Blanc reduction - Wikipedia

    en.wikipedia.org/wiki/Bouveault–Blanc_reduction

    The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. [1] It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. [2] [3] [4] Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. [5]

  8. Alcohol oxidation - Wikipedia

    en.wikipedia.org/wiki/Alcohol_oxidation

    Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.

  9. Lithium borohydride - Wikipedia

    en.wikipedia.org/wiki/Lithium_borohydride

    Lithium borohydride (LiBH 4) is a borohydride and known in organic synthesis as a reducing agent for esters.Although less common than the related sodium borohydride, the lithium salt offers some advantages, being a stronger reducing agent and highly soluble in ethers, whilst remaining safer to handle than lithium aluminium hydride.